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A comprehensive study has been reported on all aspects of the transition of packed bed to the state of
incipient fluidization (point of minimum fluidization, onset of fluidization): particle size and shape, size
distribution in a batch of particles, fixed bed voidage, pressure drop through a packed bed and onset of
fluidization. A number of predictive equations have been compared that were proposed to estimate the
minimum fluidization velocity. All the equations tested do not have any flow limitations and are applicable
to laminar, transitional as well as to turbulent flow regime. While some equations have some foundation in
theory, the other are more or less generalized correlations of experimental data amassed by different
authors under various conditions. The influence of temperature and pressure on the minimum fluidization
velocity has been explored with respect to the important applications such as combustion and gasification.
Problems have also been discussed with transition from fixed to fluidized bed of binary and polydisperse systems.

1. INTRODUCTION

Fluidization has long been recognized as an efficient means of contacting gas and parti-
culate solids. Many chemical reactions are best carried out in fluidized bed reactors
which provide cxcellent temperature control of the reaction volume. The high heat
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capacity of the solid particles in combination with the turbulent motion of the bed
climinates or minimizes the formation of hot spots. In general, packed beds are not
capable of providing the desired temperature control duc to their poorer heat transfer
characteristics and the low heat capacitics of gases in comparison to heats of reaction.
Another advantage of the fluidized state is fluid-like propertics that permit easy
transport of solids, for example by simple gravity flow.

There are, however, some possible disadvantages of fluidized beds such as excessive
cntrainment of fines, crosion of bed internals, by-passing of the solids by gas and
defluidization. An application of fluidized bed calls for careful design based on the
fundamental physics of gas—solid fluidization. Such a fundamental approach would be
desirable for reliable scale-up from a smaller reactor to a full-scale operation.

It is known that quantitics such as thc minimum fluidizing velocity, U, ¢ and the
cxcess gas velocity, U - U, most markedly affect the behaviour and performance of a
fluidized bed, including bubble size, bed expansion and mixing of particles. The state
of incipicnt fluidization is defincd here as the condition where the superficial fluid
velocity, U, is equal to the minimum fluidizing velocity, U, . This condition is attained
when the particles become just suspended as the velocity of fluid flowing upward
through a batch of solids is progressively increased. In other words, the superficial
velocity of fluid needed to just fluidize the particles is called the minimum fluidizing
velocity.

The incipient f{luidized state, which is also called the onsct of fluidization, is an
important aspect of a fluidized bed and the minimum fluidization velocity is the basic
information needed for the design and development of various gas—solid contactors.
Although the majority of fluidized bed processes are conducted with polydisperse
particles at clevated or high temperature, most rescarch on the basic physical propertics
of fluidized systems has been done at ambient temperature and pressure with nearly
monodisperse matcrials. In recent years the combustion of low-grade coal, gasification
of coal, waste incincration and desulfurization of fluc gas has been studied in fluidized
beds. Such fluidized systems arc operated at clevated or high temperatures (and pressures)
and utilize a wide varicty of solid particles. The ever increasing commercial use of
fluidized opcerations synchronizes the importance of understanding the influence of
temperature and pressure, as well as fluid and particle properties, upon the minimum
fluidization velocity and other characteristics of gas-fluidized beds.

While liquid-solid fluidized systems usually expand homogencously (particulate
fluidization, Hartman ct al.!), gas—solid fluidized systems generally exhibit the forma-
tion and flow of non-homogenitics (bubbles) through the fluidized beds (aggregative
fluidization). The bubbles are usually formed during operation conditions very close to
the point of minimum fluidization.

This review paper is linked to our recent work? related to predicting the minimum
fluidization velocity. In addition, new findings are presented relative to fluidization at
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high temperature. A more general trcatment of the subject can be found in recent
monographs of Yates®, Levenspiel* and Geldart®.

2. PARTICLE SIZE, SHAPE AND DENSITY

Although it is usual and convenient for rescarchers to work with approximately mono-
disperse fractions of spheres, this situation is very rare in engincering practice. More-
over, in practice fundamental parameters such as size, size distribution, shape and
density of particles are seldom defined rigorously.

There are several ways of defining the size of a particle of shape other than spherical.
The most relevant size parameter for packed and fluidized beds is the surface/volume
diameter, d,, (the diameter of a sphere having the same external surface area/volume
ratio as the particle).

It can be shown that

d, = Wd,, ()

where d, is the volume diameter (the diameter of a sphere having the same volume as
the particle). The volume diameter can be computed from the weight and volume of a
sample of particles. The volume can be computed from the density or measured by fluid
displacement, if the particles are nonporous. The sphericity, P, is the most appropriate
single measure for characterizing the shape of irregular and other nonspherical
particles. It is defined as

surface arca of equivalentsphere

surface area of the particle both of the
same volume

\p

s 1. @

Thus ‘¥ = 1 for perfect spheres and 0 < 'V < 1 for other bodies. The sphericity, and
the diameters d, and d, can be calculated exactly for gcometrical bodics such as sphe-
roids, ellipsoids and other manufactured shapes. The sphericity of irregularly shaped
particles can be determined photographically® or with the aid of empirically established
relations between the sphericity of particles and the voidage of a packed bed of these
particles as will be shown below. The sphericities of some geometrically regular bodies
as well as those for some other shapes and some common solids arc presented in Table
I. The values given for the irregular particles should be regarded as estimates only.
Viewing particles through a microscope and comparison with the data in Table I will
usually provide a realistic value of V.

In most practical situations, particles are irregular and they arc generally measured
by screen analysis provided that they arc larger than about 0.08 mm. The screen size or
sieve size, d,, is then the arithmetic mean of the aperture of the screen which just lets
the particles pass through and the next finer screen below on which they are retained.
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Unfortunately, there is no general relationship between the screen size, d,, and the
surface/volume diameter, d,. Abrahamsen and Geldart’ have attempted to compare the
screen size with the volume and surface/volume diameters for crushed quartz. They
concluded that for particles which have a sphericity of about 0.8

d

v

= 1.13 dP 3
and

d

sV

~ 087d,. “)

For spherical or nearly spherical particles, the respective diameters d,, d, and d,
agree well. In work with irregularly shaped solids, the surface/volume diameter is
usually estimated from the sieve size, dp, as follows:

dy, = Wd,. )

sV

For a collection of particles of different size, there are several ways of defining an
average size. When sieving is used, the mean size, d,, directly related to the surfa-
ce/volume mean can be computed from the individual sieving fractions by

d, = 1/3 (x/dy), (6)

where the summation is taken over all sieve size fractions, i, and where x; is the weight
fraction of particles in size range i and d; is the arithmetic average of the adjacent
sieve apertures that define size range i.

TaBLE |
Sphericities of different shapes, materials and commonly used packings

Particle Sphericity Particle Sphericity
Sphere 1.00 Crushed coal 0.65 - 0.75
Cube 0.81 Crushed particles 0.5-0.7
Cylinder, h = d 0.87 Pellets 0.7-08
Cylinder, h = 5d 0.70 Wheat 0.85
Sharp sand 0.65 Corn 0.75
Round sand 0.85 - 0.95 Crushed limestone 0.55
Crushed lignite 0.4 Limestone calcine 0.75
Brown coal ash 0.53 Flakes 0.2
Rashig rings 0.26 - 0.53 Corundum 0.82
Berl saddels 0.30 - 0.37
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Another method of characterizing solid particles cmploys the median, d,,,,, which is
the size corresponding to the 50% value on the cumulative curve of percentage undersize
versus sicve aperture. The median, d,,,,, should not be confused withd, given by Eq. (6).
It is apparent that the dispersity within a collected fraction is affccted by the differences
in the apertures of the adjacent sieves. The Czech Standard series of sieves is arranged
in multiples of 1.25, which is close to the British Standard sieve (multiples of 1.189)
and U.S. Tyler Standard screen (multiples of 1.189 or 1.414). Since the cumulative
curve can conceal some pecularities, weight distribution functions, usually given in the
form of a histogram, should be examined to obtain possible additional information.
There is no entirely satisfactory way of comparing the width of the size distribution
of different materials, nor of defining how wide a distribution actually is. Geldart’®
recommends to usc the relative spread, o/d ,, in which the spread, o, is introduced

somewhat arbitrarily as

pm>

O = (dgyp,—di60)/2 . (7)

The quantities dgyq, and d\¢q arc read from the cumulative curve and d,,, is the
median size. Typical values of relative spread range from 0.05 (narrow distribution)
through 0.4 (wide distribution) to 0.7 (very wide distribution).

The particle density is defined as

ps = M/V,, ®

where M, is the mass of a single particle and V), is the particle volume that includes all
voids within the particle whether they are open or closed. The particle density is
usually determined by mercury or water displacement (pycnometry). Possible causes of
some misleading results of pycnometry with small particles (d, < 0.15 mm) have been
summarized and discussed by Knight and Rowe®. The particle density, p,, should not be
confused with the true, skeletal or absolute density of material, py;, which is measured
by the helium or air pycnometry. The particle density includes the voids or pores in the
particle and particle density and absolute density are related to the particle porosity, €
by the relationship

p’

g, = 1 - p/Ppye- 9

3. FIXED BED

3.1. Bed Voidage

Fluids passing through a fixed or packed bed of particles flow through passages be-
tween the particles. The effective dimensions of the flow passages depend upon the
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following variables: porosity (voidage) of the bed, diameter (size) of the particles,
sphericity (shape) of the particles, orientation or packing arrangement of the particles
and roughness of the particles.

Bed porosity is the most sensitive variable employed in defining a packed bed and
should, therefore, be determined with a high degree of accuracy. However, experience
shows that high accuracy can be achieved only in very specific situations. For example,
the particles adjacent to the wall of a column pack more loosely than the particles in the
central part of the bed. It is a well-documented fact that the porosity of bed increases
with increasing ratios of particle size to bed diameter’. The rougher the particles and
column walls, the higher is the void fraction of the bed. For gas—solid systems a
satisfactory estimate of the bed porosity can be obtained by pouring a mass W of
particles into a cylinder of cross-sectional arca F. Then, the values of & can be calcu-
lated from the relation

e = 1 - W/(FHp,). (10)

Laboratory experience has shown a significant dependence of height of the poured
bed, H, upon the rate of pouring and shaking.

The porosity of a bed is closely related to the sphericity of the particles and also
depends upon the size distribution of the particles. The sphericity might be employed as
the sole determining factor of bed porosity if the particles were monodisperse, of
uniform geometry and everywhere packed in the same spatial arrangements. Unfortu-
nately, thosce conditions do not hold generally and both the porosity and the sphericity
are necessary to define the packed bed. Table II gives experimentally obscrved valucs
of bed porosity and sphericity for random-packed beds of uniform-sized particles. This

TaBLE 11
Observed values of the porosity of randomly packed beds as a function of the particle shapc10

£ £
Wp W

loose packing  dense packing loose packing  dense packing
0.25 0.85 0.80 0.65 0.55 0.48
0.30 0.80 0.76 0.70 0.53 0.45
0.35 0.75 0.70 0.75 0.51 0.43
0.40 0.72 0.67 0.80 0.48 0.40
0.45 0.67 0.62 0.85 0.47 0.38
0.50 0.64 0.59 0.90 0.45 0.36
0.55 0.60 0.55 0.95 0.43 0.34
0.60 0.58 0.51 1.00 0.42 0.31
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table can be used to estimate the particle sphericity provided the bed porosity is known
or measurcd. The voidage of the bed formed by uniformly sized spheres lies in the
range € = 0.40 to 0.42.

It is notable that both the bed voidage and the sphericity of particles employed in
defining the bed, are quantities that can be dctermined for a given real system. In
practice, both variables depend upon and are influenced by the experimental techniques
used to measure them.

Orientation of the particles is an important factor in some situations. The definition
of the mean particle dimension as cxpressed by Eq. (6) is morc strongly weighted by
fine particles than by larger particles, so small proportions of fine particles can have a
disproportionate cffcct on Ep. Roughness of the particles is of less importance than the
other factors, but may become somewhat more important in highly turbulent flow.

3.2. Flow and Pressure Drop through a Packed Bed

For flow through porous media (packed beds), it is desirable to predict the flow rate for
a given pressure drop or to predict the pressure drop necessary to achicve a specific
flow rate. Although the complexity of flow pattern rules out a rigorous solution of the
problem, empirical and semi-empirical solutions exist.

A packed bed can be modelied as a large number of small tortuous pipes or capilla-
ries of varying cross-section. Another approach views the packed bed as an assembly of
particles immersed in a fluid. The first approach has proved to be somewhat more
practical.

Kozeny'! combined the Darcy law with the Hagen—Poiscuille equation for laminar

flow through straight cylindrical tubes. His expression was later modified by Carman'?
to account for the sinuslike shape of the actual flow paths to give the result:
AP (1-¢)? wU
— = 180 ——F —73, Re<1. 11
H & (Vd) ‘ (0

The Kozeny—Carman cquation (11) applies at Reynolds numbers less than about 1,
Reynolds number being defined in terms of the superficial or empty-column velocity
and the particle diameter. Under conditions of laminar flow, the pressure drop is due
solely to viscous energy losses. Such conditions occur with beds of particles smaller
than about 0.15 mm. There are some indications that the numerical constant in Eq. (17)
may be accurate only for nearly monodisperse particles, porositics between 0.4 and 0.5,
and Reynolds numbers between 0.1 and 1.

In fully developed turbulent flow, the friction factor depends only on the roughness.
For such conditions, where the pressure drop is due solely to Kinctic energy losses,
Burke and Plummer'? proposed the formula
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AP 1-¢ pr2
- 1.75 % _‘Pdp , Re>1000. (12)

Comparing Eqs (/1) and (12) it can be seen that the viscous energy losses are
proportional to (1 - €)%/e* and the Kinetic energy losses to (1 - €)/e?.

3.3. Model of Ergun

Sceking to develop a comprehensive formula applicable to all flow regimes, Ergun'4
assumed and verificd that the total encrgy loss in fixed beds can be treated as the sum
of viscous and kinctic energy losses. Thus, the Ergun capillary flow model argues that
the flow resistance is the sum of a viscous resistance corresponding to the linear term
in the relationship

AWP = aU + bU? (13)

and an incrtial resistance corresponding to the quadratic term. The first term on the
right-hand side arises from the Kozeny—Carman cquation (Re < 1) and represents the
pressure loss due to skin friction (viscous term). The second term expresses the pressu-
re drop duc to form drag (kinctic term) and is given by the Burke—Plummer expression
(Re > 1 000). The parameters @ and b in Eq. (13) are as follows

(1-€)2 M
= 150 V—+ —— , 14
a 83 (‘p dp)z ( )
1-g Pt
b = 175 3 ‘I’a'p . (15)

The values of the numerical constants, 150 and 1.75, were computed using more than
600 experimental data points obtained in experiments with various-sized spheres, sand,
crushed coke, and the following gases: nitrogen, carbon dioxide, methane and hydrogen.

The Ergun equation is a comprehensive relationship which can be applicd to all types
of flow. Its predictions arc shown in Fig. 1. The Ergun cquation has been found to
estimate the pressure drop across a fixed bed within an accuracy of £50%. It should be
noted that this cquation was developed for ambient temperature and pressure, and for
isothermal and incompressible fluids. It also works well for gases when the pressure
drop is not high and the gas density is estimated using the mean pressure in the bed. If
the pressure drop is high, Eq. (13) should be written in differential form and applied
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sequentially to small successive increments of AP. The structure of the Ergun equation
provides a way of estimating the influence of temperature and pressure on the pressure
loss of packed beds at various operating conditions.

Under laminar flow conditions (Re < 1) the second term on the right-hand side of Eq.
(13) can be neglected

Lo & S (13a)

In fully developed turbulent flow (Re > 1 000) the second term dominates on the
right-hand side of Eq. (13)

AP pU?
i (13b)
p

Macdonald et al.’3 and Dullicn'® have tested the Ergun equation using data sets of six
rescarchers for widely different porous media. They found that the specific constant
150 should be replaced by a value of 180 in the viscous flow region. For the inertial
flow regime, the numerical parameter is not single-valued, but depends on the particle
roughness and lics in the range 1.8 — 4. Their analysis has also suggested that replacing
the term €% in the Ergun modcl with the term €6 would give better results.

It should be mentioned that there are other correlations for predicting the pressure
drop in packed beds. For example, Nakamura et al.!?, working at clevated temperatures
and pressures, were able to fit their experimental data for fixed beds to the exponential
relationship

—_— = n

" cur, (16)
where n varied between 1 and 2 as viscous or turbulent forces, respectively, predo-
minated.

#: TV T YT T T T ITmT Ty

v | ]

Ly e

FiG. 1 [ 1

Graphical representation of the pressure drop in I 1

packed columns predicted by the Ergun relalionship” ............ L l

(full line): asymptotes: 1 Kozeny—Carman, 2 Burke- — -'“"'n by Ll
Plummer Ref{1-¢)
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4. ONSET OF FLUIDIZATION

At the condition of minimum fluidization (also called the onsct of fluidization) the
force exerted by the upward flowing fluid becomes equal to the gravitational force
acting on the particles. In other words, the pressure drop across the bed is equal to the
apparent weight of the bed particles per unit cross-scctional area of bed as stated by the
cquation:

(i‘,;’-’-) IER(RCRIOSTArE (17)

where €., is the porosity of bed at minimum fluidization. The porosity € can be
estimated by measuring thec most loosely packed bulk density of bed. If the bed is
composed of interlocked, very angular or cohesive particles, then an excess pressurc
drop is needed to free them and the cquation above refers to the conditions after cohe-
sion or interlocking has been overcome.

4.1. Ergun Equation

Equating Eqs (13) and (17), to eliminate (AP/H) results in the quadratic expression

(1-¢ f)2 e Upye
(I_F‘mf) (ps_pt")g = 150 3m (\pd:;Z +

Emf

(1 - F’mf) P Un21f

1.75 18
R “
Equation (18) can be rewritten in dimensionless form as
175, 150(1 -2y
R e + T Re s - Ar = 0, 19)

where Ar is the Archimedes number (also called the Galileo number) and Re, is the
Reynolds number at minimum fluidization conditions.
Equation (79) can also be written in the form

1.75ARe2; + 150 BRe, - Ar = 0,

(kinetic term) (viscous term) (20)
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where the parameters A and B arc defined functions of void fraction, €., and shape
factor, ‘P, only:

A = 1/(sﬂlf‘l’) @1
and
B = (1 -smf)/(efnf‘lﬂ). (22)

Under conditions of laminar flow, where Re, ¢ < 1, the minimum fluidization velocity
can be predicted from Eq. (18) by neglecting the Kinctic term:

U . ] dZ(p,-pp) g
mf 150 B e ’

Re,c<1. 23)

In highly turbulent flow, where Ree > 1 000, the viscous term in Eq. (18) is negli-
gible and we can write

d —py) p\172
1 b (Ps—p) g ’ Re

Umf = 1.75A P m

¢>1000. @24)

The predictions for U, ¢ given by Eqs (23) and (24) are significantly different. Whilc
the fluid viscosity does not appear in Eq. (24), the minimum fluidization velocity
changes with the square root of particle size in turbulent flow. The minimum flui-
dization velocity depends on the square of particle size in the laminar flow regime (Eq.
(23)). Unlike equations (23) and (24), Eqs (18) — (20) have no flow restrictions and are
applicable in both the laminar and the turbulent flow regime. It should be noted that the
predictions of the minimum fluidization velocity provided by the Ergun cquation are
very sensitive to the minimum fluidization bed voidage. In the laminar flow regime an
crror of 3% in the estimate of ¢ leads to an crror of about 11% in predicted U,;.

The state of incipicnt fluidization has been traditionally determined by noting the
{lTow rate at which the pressure drop stops increasing with increasing fluid velocity, and
remains cssentially constant thereafter. Useful experimental details on this technique
can be found clsewhere?. This conventional or macroscopic method has been supple-
mented with an instrumental technique which determines the minimum fluidization
velocity by microscopic or stochastic measurements®!® = 20, This newer approach
determines the onsct of (luidization as the condition where significant rapid pressure
fluctuations begin. A sensitive pressure probe placed immediately above the distributor
detects a fluctuating pressure signal from any point in the bed. The pressure fluctua-
tions reflect directly the dynamic nature of a fluidized bed. This instrumental technique
is particularly uscful in mecasuring the incipient fluidization in a bed of complex confi-

Collect. Czech. Chem. Commun. (Vol. 58) (1993)



1224 Hartman, Coughlin:

guration whercin the starting point of fluidization is not distinct as, for example, in
tapered (conical) beds?! ~ 23,

In this dynamic method, the onsct of fluidization is indicated when the pressure drop
signal abruptly starts to fluctuate rapidly as illustrated in Fig. 2.

4.2. Equation of Wen and Yu

Another theoretical formulation for incipient fluidization of spherical particles is based
on a steady-state balance of forces acting on an individual solid particle in the fluidized
bed?* = 2°, The drag force is set equal to the difference between the gravitational and
buoyancy forces according to the equation:

nd} pU? nd?
_6L (ps - pl) 8 = ﬂE) <CD ) _42) s (25)
where
fle) = Fpa/Fpy (26)

is the ratio of drag forces acting on a particle in the assembly of particles (Fp,) and on
an isolated particle (Fp,).
Under conditions of incipicnt fluidization, Eq. (25) can be rearranged to

3 2
zf(ﬁmf) CpReye = Ar, 27)
where Cp = Cp (Re,p).
P
—
h 1s
Un¢
FiG. 2
Detection of the state of incipient fluidization
U by a sensitive pressure prohczo
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For the terminal frce fall velocity of a single sphere in a uniform infinite
medium?2°, the Eq. (27) reduces to

CpRe? = gAr, [e=1,Re], 28)

where f(g,,) has been set equal to unity according to Eq. (26) for a single particle.
Wen and Yu?® employed the widely accepted empirical expression of Schiller and
Neumann®® for the drag cocfficient of a sphere

Cp = 24 (1 +0.15R"%*7)/Re (29)

which is valid over the range 0.1 < Re < 500 — 1 000. As the voidage function f(g),
Wen and Yu?* proposed the empirical relationship

/(8111f) = 1/*:1;] (30)
Using these last two relations Eq. (27) can be rewritten as
2.7Rel87 + 18 Re, ¢ — €*"Ar = 0, W=1. 3n

Equation (37) can casily be solved for Re, ¢ by an clementary technique such as the
interval halving. Introducting the shape factor and keeping the original form of Re,
and Ar provides the Wen-Yu cquation for nonspherical particles:

2.7 WO ReLOST o {8 Re, o - W2 e*TAF = 0. (32)

The foregoing development by Wen and Yu?* predicts that the minimum fluidization
velocity is very sensitive to the bed voidage. In the laminar flow regime, an crror of 3%
in the estimate of €, leads to an error of 14% in the prediction of U .

Values of the Reynolds number, Re,;, at minimum fluidization velocity as predicted
by the Ergun equation (79) and the Wen and Yu equation (32) are compared in Table 111
As cvident there are appreciable differencies in Reye which range between -25 and
+28% for Archimedes number values ranging from 1 through 108,

4.3. Simplified Empirical Equations

Both bed voidage, €., and sphericity, 'V, employed in the predictive expressions are
often determined only imperfectly for a given real system. In practice, both factors are
not independent and are influenced by the experimental measurement techniques as
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well. When no information on ‘¥ and € is available for a given material, the values
presented in Tables I and I can be employed as useful estimates.

In order to avoid the difficultics and uncertaintics accompanying the estimation of W
and €., Wen and Yu?! proposed a simplified method for predicting the minimum flui-
dizing velocity. On the basis of almost threc hundred experimental measurcments found
in the literature, thesc authors®! approximated the sphericity-voidage functions A and B
(Eqs (21) and (22)) by the constants

A = 14 and B= 11. 33)
Then the predictive correlation becomes
Re,e = [(33.67) + 0.04082Ar]'? - 33.67. 34

The simple correlation embodicd in Eq. (34) covers the wide Re, ¢ range, from 0.001
to 4 000, and predicts Re,; with an overall standard deviation of +34%. This method
makes it possible to circumvent the need to determine W and €, On the other hand
such simplification can result in a significant loss of accuracy.

Many rescarchers have followed the approach of Wen and Yu*! and fitted their expe-
rimental measurements of the minimum fluidization velocity to an empirical function
of the form

Re,. = (CE+C,ANV2 - C,. 35)

TaBLE I11
Values of Reynolds number at minimum fluidization predicted by the equations of lErgun14 and Wen and
Yu®! for spheres (‘P = 1, g,,c = 0.41)

Re,

mf
Ar d, %
Ergun, Eq. (19) Wen and Yu, Eq. (32)
1 0.000778 0.000840 -7.6
10 0.007786 0.008363 -72
10? 0.07776 0.08190 -52
10° 0.7671 0.7489 24
10° 6.858 5.637 19.6
10° 4237 32.05 27.7
10° 174.8 148.6 16.2
107 602.8 6238 -34
108 1 959.0 2 511.0 -24.7
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The constants C; and C, arc usually computed by a simple optimization technique. It
is apparent that computed values of these constants always depend on the nature of the
solids and fluids used in the experiments. As can be seen in Table 1V, considerably
different constants have been reported in the literature for various materials.

Comparing the empirical equation (35) with the original Ergun equations (/9) and
(22) indicates that the paramcters C; and C, depend on the porosity, €., and the sphe-
ricity, P, as follows:

C, 42.86 (1 -¢,)/V = 4286B/A (36)

C, = Wel /175 = 1/(1.754). (37)

As shown in Table II, the bed voidage decrecases monotonically as the particle sphe-
ricity increases. Making use of this behaviour Lucas et al. 3% classified particulate
matcrials into three categorics of decreasing sphericity: round particles, sharp particles
and least spherical particles. They analyzed a large amount of data from diffcrent
sources covering a wide range of values of d,, 'V, €, and different fluidizing media to
determine values of Cand C,in Eq. (35) in each of the three dcfined sphericity ranges
with the following results:

For round particles (0.8 <V < 1):

Re,, = (870.25+0.0357Ar)/2 - 29.5. (38)

mt’

TaBLE IV
Shape-voidage functions A and B in Eq. (20) and the constants Cy and C; in Eq. (35)

Reference A B C, C,
Nakamura at al."” 12.3 9.73 33.95 0.0465
Wen and Yu®! 14 11 33.67 0.04082
Saxcna and Vogel* 10 5.9 25.28 0.0571
Grace® 14 8.89 272 0.0408
Chitester et al.** 11.6 7.75 287 0.0494
Lucas et al.’>* 16 11 295 0.0357

ncarly spherical particles: 0.8 <V < 1
10 75 32.1 0.0571
sharp particles: 0.5 <V < 0.8
8.5 5 252 0.0672
least spherical particles: 0.1 <\ < 0.5
Kocurck and Hartman®’ 20.2 10 213 0.0283
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Equation (38) is based on 107 data points corrclated with an avcrage standard devia-
tion of Re ;s of £21%.
For sharp particles (0.5 <V < 0.8):

Re,; = (1030.4+0.0571Ar)"? - 32.1. (39)

Equation (39) is based on 24 data points corrclated with an average standard devia-
tion of Re, ¢ of £23%.
For particles of lowest sphericity (0.1 < 'V < 0.5):

Re,. = (635.0+0.0672Ar)2 - 25.2. (40)

mf

Equation (40) is based on only 6 data points corrclated with an average standard
deviation of Re, ¢ of +22%.

Broadhurst and Becker® followed another approach to develop a generalized equation
for estimating U, in which sphericity and void fraction do not appear. These authors
conducted experiments with a varicty of materials over wide ranges of column diame-
tcr, bed depth, particle diameter, particle density, and gas propertics. Using the theory
of dimensionless groups, the corrcelation equation

Arl.SS 172

Repe =
mt = 12.42.10% (p/p)°1F + 37.7 AP

(1)

was developed with the aid of statistical techniques. For wide ranges of paramcters
(1072 < Rey < 108 and 5 . 102 < py/pe < 5. 10%), Eq. (41) predicts the minimum
fluidizing velocity within £37%. Although the correlation (47) should preferably be
used for regular particles of higher sphericities (‘V > 0.8), we have used this equation to
obtain satisfactory agrecment between experimental and predicted values of U, for
irregular, flake-like particles of low sphericity™.

Another empirical correlation, without ‘P’ and g, that is commonly employed in the
non-English literature, is the relationship developed by Goroshko et al.*

Ar

R) .=
‘ot = T400 + 5.22Ar72

(+42)

for spherical particles (g, = 0.4).

Table V compares predictions of three generalized equations (34), (38) and (41). The
predictions appear to be in rcasonably good agrcement, especially those provided by
these three correlations are close in the middle ranges of Re, . and Ar. These rela-
tionships nced no knowledge of the particle sphericity or the bed voidage. They are not
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subject to any specific flow limitations and can be applicd to any practical conditions
of flow. However, they should not be used when ¢ cand \V are known. If ¢ cand ¥ are
known, the original Ergun equation (19) or the Wen—Yu equation (32) give better esti-
mates of U, than their simplified versions. Unfortunately, in most instances reliable
quantitative information as to €, -and 'V is not available. Tables I and II permit useful
estimates of the likely ranges of € and W for many practical situations.

4.4. Influence of Temperature

Most fluidized bed processes are conducted at elevated temperatures and pressures
whereas almost all rescarch on the fundamental behaviour of fluidized systems has
been done at ambicnt conditions. Although changes in particle size, shape, and density
duc to incrcased temperature can usually be neglected, important phenomena as chemi-
cal reactions, softening, sticking or agglomeration of particles can occur at clevated
temperatures.

The fluidization behaviour of any particulate material is strongly influenced by the
physical properties of the fluidizing fluid. The cffect of temperature and pressure on the
density of gas can be approximated by the equation of state of an idcal gas

p, = 0.1203MP/T 43)

Pair 3.489P/T. (44)

TABLE V
Values of Reynolds number at minimum fluidization estimated by the generalized empirical correlations of
Wen and Yu (Eq. (3)). Lucas et al. (Eq. (38)). and Broadhurst and Becker (Eq. (/1))

Re¢ S, %
Ar
Eq.(3) Eq.(38) Eq.(41) Eq.(39) Eq.(38) Eq.(41)

10 0.00605 0.00605 0.0103 -19.0 -19.0 37.9
10° 0.0605 0.0604 0.0872 ~12.8 -12.9 25.7
10° 0.600 0.599 0.728 -6.6 -6.7 133
10 5.59 5.53 5.78 -0.8 -1.8 26
10° 38.52 37.13 36.60 2.9 0.8 -22
10° 171.1 161.7 152.6 5.7 -0.1 -5.7
10 609.9 568.7 510.1 8.4 1.0 -9.4
108 1 986.0 1 860.0 1626.0 8.9 2.0 ~108
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Gas viscosity depends only weakly on pressure but increases markedly with tempe-
rature as described by the following empirical equations:

P TLS
uni\rogcn = 1.5.10° 1236+ T (45)
0.66
W, = 1.81.107° (2—;) : (46)

Assuming ncither the voidage at minimum fluidization nor the size and shape of
particles dcpend on temperature, the cffect of operating temperature on U can be
assessed using the Ergun cquation. The quadratic structure of Ergun’s cquation (73)
suggests that U, ¢ is not, in general, a linear function of T. In laminar flow (Rey¢ < 1),
where the viscous loss and only the first term on the right-hand side of Eq. (13) domi-
nates, the minimum fluidization vcelocity is inverscly proportional to the gas viscosity

Umf ~ l/ug’ Remf< L. (47)

Because gas viscosity increases with increase in temperature, U, ¢ decreascs with
temperature for small Reynolds numbers (small particles):

U

mf

~ T o T, Rec<1. 48)

For turbulent flow (Re,, > 1 000), where the kinctic loss i.e., the second term on the
right-hand sidc of Eq. (13) predominates, the minimum fluidizing velocity is inversely
proportional to the square root of the gas density:

Umf ~ (I/Pg)“'s ’ R(.’mr> 1000. (4())

The density of a gas decreasces as its temperature increases so that U, ¢ increases with
temperature at large Reynolds numbers according to the expression

U

mt’

~ T3, Re, > 1000. (50)

In the transition regime of flow conditions (1 < Re, < 1 000), U, ¢ is proportional to

the absolute temperature raised to a power ranging from -1 to +0.5:

U T-' o T%, 1 <Rey; < 1000 . &F))

mt’

As will be shown in the following paragraphs, the velocity of minimum fluidization
is cssentially independent of temperature under conditions when Re, ¢ = 37 — 47, i.c.,
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U TO, Re=37-47. (52)

mf =

In previous publications® 44! we explored the influence of temperature on the state

of incipient fluidization of lime particles used for sulfur removal in a fluidized bed
rcactor. In that work we employed the following Modified Ergun (ME) cquation:

k ky(1-¢
_31_ Re2; + Ky (1= o) Re

-Ar = 0, 53
Eglf‘pz mf ( )

mf

wherein the constants 1.75 and 150 in the original Ergun equation are replaced by the
more gencral coefficients &, and k,. These cocfficients were detcrmined by numerical
treatment of the experimental data for U,cof lime particles (d, = 0.565 mm — 1.22 mm)
in the temperature range between 20 and 870 °C. The mean bed voidage, €., and the
particle sphericity of lime, W, were found to be as large as 0.51 and 0.69, respectively.
The viscous term constant k, varied from 140 to 150 and did not show any dependence
on temperature. The kinetic term constant k; was found to increase quite rapidly with
temperature as described by a lincar cmpirical equation

k, = 1.053 + 6.503.10T. (54)

Using €,,=0.51, ¥ = 0.69 and k, = 145, thc minimum fluidization velocities of several
lime fractions are predicted by the ME cquation (53) and Eq. (54) with accuracy better
than 7.5%. Of course, the semicmpirical ME corrclation has the usual limitations and
should be applied with caution outside the experimental conditions from which it was
deduced.

As follows from the equations above, the dependence of U, on temperature ariscs
from the cffect of temperature on the Reynolds number, Re, the fluid viscosity, and
the fluid density. In gencral, the minimum fluidization velocity is a nonlincar function
of temperature which can exhibit a maximum.

In Fig. 3, predictions of the ME equations (53) and (54), the Wen-Yu (W-Y) equa-
tion (34) and the Broadhurst-Becker (B-B) corrclation (41) are compared regarding
influence of temperature on U, ;. It is evident that the W-Y equation predicts the largest
sensitivity to temperaturc. Compared with the predictions of the ME equation, the W-Y
cquation tends to overstate the influence of temperature upon the minimum fluidization
velocity. It should be noted that both the B-B and W-Y equations were deduced from
experimental measurcments conducted at ambicnt temperature.

Experimental data for the flow regime in which the kinetic losses arc important or
dominant were reported by Pattipati and Wen*2, Botterill et al.** and Flamant et al.*4,
Using large particles of sand (d, = 3.4 mm), Pattipati and Wen*? found a steady increa-
sc in U, from 1.55 1o 2.12 m s™! with increasing temperature in the range 45 — 505 °C.

mf

Collect. Czech. Chem. Commun. (Vol. 58) (1993)



1232

Hartman, Coughlin:

The opposite trend was reported by Flamant et al.** for corundum particles smaller than
0.6 mm at temperatures ranging from 20 to 900 °C.

The structure of the Ergun cquation hints at the existence of a maximum in the
function U, ¢ = U,«(T). The experimental data of Botterill et al.** plotted in Fig. 4 also
suggest such a maximum might occur. The W-Y and B-B computed curves also exhi-
bit feeble maximums at 505 and 485 °C, respectively, for Botterill’s particles of sand
(d, = 2.3 mm). Though different approaches were employed to develop these two equa-
tions, their predictions are in fair agrecement.

As the particle size and/or density increase, the maximum on the curve U= U «(T)
moves towards higher temperatures as shown by results systematically computed from
the B-B correlation and plotted in Fig. 5 where the solid lines define conditions under
which maximum U, occurs. Systematic computations also show other interesting
results. Computations using the W-Y equation indicate that (dU,,/dT) = 0 at Re, ~ 44
independent of the sizes or densities of the particles. Computations with the B-B equa-
tion, however, indicate that the Reynolds number at which the maximum occurs increa-
ses moderately with increasing particle size and particle density as shown in Fig. 6
where the range of Re, ¢ covers the values from 37 to 47. It is interesting to note that the
flat maximum occurs on the experimental curve U, = U «(T) at Reyy= 49 (U, = 1.7
m s~!, 400 °C, d,= 1.7 mm, p;=3 950 kg m~) as reported by Flamant ct al.*4,

In practice, the condition of minimum fluidization at a temperature of interest is
often predicted from measurcments at room temperature. The above results indicate

Ar
1%.0° 17.0° 64 0
T T T
15| .
Unt
ms-
1.3
17
-0\ 1 -
o
1 1 L 1 0.“0 2&) L 1
600 000
0 200 400 t,°C t,°C 600
FiG. 3 Fii. 4

Influence of temperature on = (dU/, (/dT)/ U, for
lime particles fluidized with air'', particle size d,
= 09 mm: 7 Wen-Yu cquation (3), 2
Broadhurst-Becker equation (1), 3 Modified
Ergun cquations (53) and (5)

Dependence of the minimum fluidization velocity
on temperature’'; Oixperimental data of Botterill
et al.?, ﬂp = 2.3 mm (size range: 1.6 — 3 mm),
Reyp = 21.6 — 144; 1 prediction of the W-Y equa-
tion (34), 2 prediction of the B-B equation (1)
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that this should be done with caution using generalized correlations such as the Ergun,
B-B or W-Y cquation.

Other experimental reports®® = 33 on the behaviour of high temperature fluidized beds
indicate that measured U, ¢ decreases with increasing operating temperature for beds of
smaller particle sizc as expected. For example, U, of sand particles (pg = 2 540 kg m™)
as large as 0.89 mm decreases from 0.43 m s™'at 25 °C to 0.31 m s™! at 620 °C. When
the flow is turbulent/transitional with larger particles, gas density becomes the domi-
nant factor and U, then increases with increasing temperature. For corundum particles
(Ps = 3 950 kg m™*) having d,=2.36 mm, it was reported*® that U, ¢ increases from 1.75
m s~!to 2.3 m s~! as temperature increases from 20 °C to 700 °C.

Comparing measured and cstimated values of U, suggests that the B-B, W-Y and
Ergun cquations predict that the incipient fluidization velocity will fall more steeply
with increasing temperature than is actually observed experimentally. Because the
physical properties of gases can be accurately predicted at the operating temperature
and the solids density is essentially independent of temperature, it appears that the real
cause of the disagreement between experiment and predictions may lic in the structure
of the bed at minimum fluidization.

T T T T T T T T
800 .
Re,,.,
vigcous forces
dominant Wl i
t,°Ch Y .
a7
400 -
200} kinetic forces
dominant
GUp¢
ar 0
ol 1 1 1 L
2
1 dp, mm
FiG. 5 FiG. 6

Influence of particle size and particle density on
the temperature at which the function U, =
U, (T) exhibits the maximum, (dU,,¢/dT) = 0. The
lines show the values predicted by the B-B equa-
tion (1) for fluidization with air: 7 pg= 1 500 kg
m™, 2 p, =2 000 kg m3, 3 p, =2 500 kg m>, 4
p. =3 000 kg m™>, 5p, =3 500 kg m™

Influence of particle size and particle density on
the Reynolds number at which the function U =
Un(T) exhibits the maximum, (dU/dT) = 0. The
lines represent the values predicted by the B-B
equation (/1) for fluidization with air: 1 p, =
1500 kg m™>, 2p, =2 000 kg m™, 3p, =2 500
kg m™, 4 p, = 3 500 kg m™>
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Botterill et al.** determined the average bed voidage at elevated temperatures from
mcasured pressurc drop

1 AP
g = 1 - —— — 55
(ps-py)g AH )

at different U > U, and extrapolated to U = U, to obtain values of €, that incrcased
with increasing temperature for small particles. Independent measurements of bed
height under conditions near incipicnt fluidization also showed a slight increase of the
bed voidage with increasing temperature®®3, In this latter method, €, was computed
from measured heights of a bed according to the conservation relationship

H()/Hmf = (] - Emf)/(] - 80) ’ (56)

where H, and ¢, arc the height and porosity of the fixed bed™.

The influence of temperature on the minimum fluidization voidage has not yct been
established unambiguously. For example, Pattipati and Wen*? have reported that €, is
independent of temperature whercas Botterill et al.*, Lucas ct al. and Saxena et al.>?
found that € _¢depends on the bed temperature. Some cxperimental measurements of & ¢
for larger particles of silica sand arc plotted in Fig. 7. As shown by this figure, the
results of Botterill ct al.** and Saxcna ct al.> arc considerably different even for very
similar particles. Changes in £, may occur duc to changes in interparticle forces as the
flow ficld around the particles is influenced by changes in temperature, Re, s or Ar. Our
experimental cvidence indicates that the minimum fluidization voidage increases
weakly with temperature for particles smaller than 0.6 mm.

With respect to possible dependence of €, on temperatures, theory predicts that the
onset of fluidization depends strongly on the bed voidage. Although € ¢ is a simple

Q.6 T T T

Eme

05
Fig. 7

Variation in the minimum fluidization voidage
with increasing bed temperature for beds compo-
sed of sand particles of different size and sphe-
ricity: 1 observations of Saxena et al.> for dy, =
0.75 mm, P = 0.73; 2 observations of Saxena et
al.> for dp = 1.22 mm, 'V = 0.8; 3 obscrvations
of Botterill et al.*® for d, =128 mm, ¥ = 0.74

0.4
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concept, its value is particularly difficult to measure at high tempcratures and, there-
fore, susceptible to experimental crror. It scems likely that changes in € with tempe-
raturc arc small.

The foregoing discussion pertains only to normal fluidization when neither particle
softening nor agglomeration occur. Sintering or agglomeration can occur, however, at
temperatures approaching softening points, at high moisture contents®’ or when chemi-
cal reactions occur. Fine particles are more susceptible to agglomeration than larger
particles. Working with lignite ash (d, = 0.9 mm) we detected*® the onset of agglo-
merating at 600 °C. Under circumstances of agglomeration of particles predictions of
U, ¢ are almost futile.

4.5. Influence of Pressure

Gas viscosity is essentially independent of pressure up to approximately 3 MPa. Since
ps >> py, it follows from Eq. (23) that U is also virtually independent of pressure in
the laminar flow regime where Re, ¢ < 1, i.c., for particles smaller than about 0.1 mm.

In turbulent flow, the Ergun cquation (24) indicates that U, ¢ decreases with increa-
sing gas density or pressure according to the relations

Upe ~ P52, Reye>1000 (57)
and then

U,

mf

~ P12, Re_.>1000. 58
mf

In the transition flow region (1 < Re,; < 1 000), the minimum fluidization velocity is
proportional to pressure raised to a power between 0 and -1/2:

U

mf

~ P 10 P2 1 <Re,;<1000. 59)

Experimental findings for U, ; arc in general agreement with the theory®® ~ 3, For
beds of larger particles, the minimum fluidization velocity decreases with increasing
pressure. The effect of pressure on U, ¢ is more pronounced for heavier particles and is
well described by the Ergun equation.

Experimental information thus far available does not permit an unequivocal conclu-
sion as to the influence of pressure on bed voidage at incipient fluidization. In some
instances ¢

me has been observed to be independent of pressure. Other reports indicate a

slight increase of €, with increasing pressure as illustrated in Fig. 8.
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4.6. Binary and Polydisperse Mixtures of Particles

All the cxperiments discussed above were performed with more or less narrow size
fractions of various particles. However, virtually all practical applications involve
multicomponent or polydisperse fluidized beds. Combustion, gasification and drying of
solids are operations in which multicomponent beds are actually used in practice. The
possible combinations of particle size, density, and shape in such beds are essentially
unlimited, but fundamental insight into the gencral behaviour of such systems can be
gained by studying systems containing two types of particles®® ~ %, When such mate-
rials arc fluidized, mixing and scgregation of particles appear to depend on particle
density and particle size distribution and gas (low rate®®. Experimental determination of
the minimum fluidizing velocity is complicated in these systems. The normal procedure
to dctermine U, by gradually decreasing superficial gas velocity is no longer
satisfactory because well-mixed (homogeneous) conditions within the bed cannot be
attained at velocities near U .. Correlations for estimating the minimum fluidization
velocity of binary systems have been proposed by various investigators and some of
them are reviewed and compared by Chyang ct al.%,

Two different approaches have been employed for estimating the minimum flui-
dization velocity of mixtures of different particle sizes. The first approach is to develop

an cmpirical corrclation directly from experimental values of U, ¢ (rcfs(’s*(’g):
nix  _ ¢
mf = Us (Uh/Us) b, (60)

where U™i* denotes the minimum fluidizing velocity of a mixture of particles of sizes b
and s, Uy, and U, are the respective minimum fluidizing velocitics of the bigger and

smaller particles and x is the weight fraction of bigger particles.

Ll T T
1
Q&;/O/'—&_——U- -
Emt
048 T
4 (o]
0.44 o 2 = 7 FiG. 8
Influence of pressure on the bed voidage at minimum
3 fluidization: carbon particles, p; = 850 kg m™
Omo,_———'—lof ) \ (rcf.(’z): dp: 1 0.066 mm, 20.108 mm, 30.171 mm;
0 2 P MPa 6 coal particles, pg = 1 247 kg m~> (rcf.“): 4d,=
/)

0.358 mm
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The second approach involves introducing an effective particle diameter and an
effective density concepts into those expressions which have been developed for mono-
disperse systems. Several formulac for calculating such effective parameters have been
proposed, but agrcement among them is not good and widely different values of effecti-
ve diameter and effcctive density can be obtained for a given mixture of particles.

The transition of a packed bed of polydisperse particles to a fluidized state takes
place over a certain range of gas velocity®*7%7!, The gas velocity at which small and/or
light particles commence to fluidize is called the beginning fluidization velocity, Uy.
As gas velocity is increased further, a state of total fluidization can be attained. The gas
velocity at which this occurs is designated the complete fluidization velocity, Ug. It
should be pointed out that, because of the range (Uye — Uy) of velocities during the
onset of fluidization of a mixture, concept of a minimum fluidizing velocity, U, at
which fluidization of monodisperse particles begins, has little physical meaning for
polydisperse materials as illustrated in Fig. 9. Although the value of U, indicated can
be defincd by the intersection of the two cxtrapolated lines, its physical intcrpretation
is not precisely defined in terms of an obscrvable phenomenon as is the case for a bed
of monodisperse particles.

The dependences of three characteristic gas velocities on pressure as determined by
an experimental procedure of slow defluidization of a polydispersc system are shown in
Fig. 10. The complete fluidization velocity, Uy, is most strongly influenced by

T T 4 T
w ‘ : . T 1
v
AP cms? 1
Pa 6 -
10’}
k1 o 2 -
3
10? 1 1 1 1
a 0
04 2 4 pupa ©
FiG. 9 FiG. 10

Pressure drop vs superficial gas velocity for a
polydisperse bed of coal particles. Mcan particle
size, gp = 0.138 mm (size range: 0.09 — 0.36 mm);
pe=1262 kg m™>; fluidized with nilrogcn(’3

Effect of pressure on the different states of a
polydisperse bed of coal particles: 1 velocity at
which (luidization is complete, 2 velocity at
which bubbling begins, 3 velocity at which flui-
dization begins. Mean particle size, Ep = 0.181
mm (size range: 0.09 — 0.38 mm): fluidized with
nilrogcn(’3
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pressure. Although U decreases rapidly with pressure, the minimum bubbling velocity
incrcases weakly as pressure increases. This behaviour of U, is in accord with the
common observation that the fluidization is casicr and smoother when carried out under
clevated pressure.

The complete fluidization velocity is defined as the velocity at which all particles are
fully engaged or supported by the gas even though scgregation by size can occur.
Knowlton’ proposed the predictive equation

Ucf = 2 X; Umﬁ ’ (61)

where U, and x; refer to the i-th sieve fraction of size d; and the summation is taken
over all sizc fractions.

5. CONCLUSIONS

The validity of the Ergun equation is gencrally recognized. This predictive relationship
has a firm theoretical foundation and is well-supported by experimental data, parti-
cularly for uniform spheres of ncarly spherical particles.

The physical picture is not that clear in cases of non-spherical particles which are
commonly used in practice. Shape factor and the bed voidage at incipient fluidization
are useful theoretical concepts that can be measured or estimated only imperfectly in
concrete systems. The bed voidage is not a well-defined function of the particle shape.
Morcover, it is a well-established fact that the minimum fluidization velocity is very
sensitive to variations in bed voidage. Quantitative descriptions of fluidization also
suffer from the complexity of defining and measuring unambiguously such funda-
mental parameters as the size and size distribution of a mixture of particles. Consi-
dering thesc difficultics, it is not surprising that the predictive relationships provide
estimates of U, ¢ with accuracy not better than £30%. The generalized, empirical equa-
tions of Wen and Yu?!, Broadhurst and Becker® and Lucas et al.*® are practically equi-
valent in this regard and the accuracy of their predictions lies within generally accepted
limits. The reliability of all assumed and measured parameters that can influence the
behaviour of fluidized beds should always be carefully considered. A decision whether
to cmploy a predictive cquation or to resort to experimental measurements of the mini-
mum fluidization velocity must rest on a rational assesment of such reliability. Expe-
riments certainly are necessary in cases of irregularly shaped or nonspherical particles,
or materials exhibiting wide ranges of sizes.

SYMBOLS
a parameter given by Eq. (1)
b parameter given by Eq. (15)
A shape-voidage function given by Eq. (21)
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Ar - dp3 g pi(ps - pr)/uf, Archimedes number

B shape-voidage function given by Eq. (22)

C parameter in Eq. (16)

Cp drag coefficient of sphere

) parameter in Eq. (35)

> parameter in Eq. (35)

dy mean sieve size of solids, m

d, mean particle size given by Eq. (6). m

dyi arithmetic mean of adjacent sieve apertures, m

dpm median corresponding to the 50% value on the cumulative curve, m
dsy diameter of a sphere having the same surface/volume ratio as the particle, m
dy diameter of a sphere having the same volume as the particle, m
fle) porosity function

F cross-sectional arca of empty vessel, m?

I3 =9.807 m 572, acceleration due to gravity

H height of bed, m

Hing height of bed at the minimum fluidization point, m

Iy height of fixed bed, m

ki, k2 coefficients in Eq. (53)

M molecular weight, kg kmol™!

M, mass of a single particle, kg

n parameter in Eq. (16)

Pr pressure in Eqs (13), (/). kPa

AP pressure drop across a bed, Pa

Re = U dp pe/itg, Reynolds number

Rens = U dp pr/it, Reynolds number at the point of minimum fluidization
Rey = Uy dp pr/ig, Reynolds number at terminal free-fall velocity

t temperature, °C

T temperature, K

U superficial (luid velocity, m s™!

Uy minimum fluidization velocity of bigger particles, m s™!

Ut fluid velocity at beginning fluidization of polydisperse system, m s7!
Uet fluid velocity at complete luidization of polydisperse system, m s7!
Umb minimum bubbling velocity, m s7!

Ut minimum fluidization velocity, m s7!

[ minimum fluidization velocity of a binary mixture, m s7!

Us minimum fluidization velocity of smaller particles, m s™!

U, terminal free-fall velocity, m s~

Vo volume of a particle, m?

w mass of particles, kg

Xb weight fraction of bigger particles

Xi weight fraction of particles of a given size

Y = (AP/11) (‘1,,2/(;1.{/)) £3/(1 - €)% quantity plotted in Fig. 1

o deviation from the mean value, %

£ bed voidage (void fraction or porosity of bed)

£nf bed voidage at the point of minimum fluidization

£0 bed voidage of fixed bed

ne fluid viscosity, kg m™! 7!
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P
Pe

PHe

Ps
g
Wy

gas viscosity, kg m™! 57!

fluid density, kg m™3

gas density, kg m™3

skeletal (helium) density, kg m™

particle density, kg m™

spread or standard deviation of particle size, m
sphericity of particle, shape factor
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